OBJECTIVE: Periodontal tissue remodeling includes remodeling of alveolar bone, periodontal ligament, and cementum. Cementoblast plays a main role in repairing root resorption. Canonical Wnt/β-catenin signaling can promote the odontogenic differentiation in osteoblast. However, the mechanism on how the orthodontic force influences the function of cementoblast and the relationship between the canonical Wnt/β-catenin signaling and Runx2 of cementoblast are not yet known. The aim of this study is focus on this relationship. METHODS: OCCM30 cementoblasts were subjected to mechanical strain by four-point bending system with tension stress for 0, 3, 6, and 12 h. They were pretreated with different concentrations of Dikkopf-1 (DKK1) for 48 h. Western blot analysis was performed to detect the β-catenin levels in the nucleus. Runx2 mRNA was observed by real-time quantitative polymerase chain reaction (RT-PCR). OCCM30 cementoblasts were then pretreated with 150 ng · mL(-1) DKK1 for 48 h and subjected to mechanical strain by FX4000T system with tension stress for 12 h. Western blot analysis was conducted to detect the β-catenin levels in the nucleus, and Runx2 mRNA was observed by RT-PCR. RESULTS: OCCM30 cementoblasts had significantly higher Runx2 mRNA and β-catenin levels after being loaded with mechanical stress. The amount of Runx2 mRNA in OCCM30 cementoblasts was significantly decreased by DKK1. When OCCM30 cemento-blasts were pretreated with DKK1 without stress, their β-catenin level was significantly decreased by DKK1 and Wnt signaling was blocked. When they were not pretreated with stress, the β-catenin level with DKK1 was lower than that without DKK1. Without DKK1, the β-catenin level in OCCM30 cemento- blasts increased afterbeing loaded with mechanical stress. With DKK1, the β-catenin level in OCCM30 cementoblasts, which were loaded with mechanical stress, was higher than that without mechanical stress. CONCLUSION: Cementoblasts had higher Runx2 mRNA expression under mechanical stress because of the Wnt/β-catenin signaling pathway effect.
[Investigation of Wnt/β-catenin signaling pathway on regulation of Runx2 in cementoblasts under mechanical stress in vitro].
[体外机械应力下牙骨质细胞中 Wnt/β-catenin 信号通路对 Runx2 调控的研究]
阅读:4
作者:Shuqin Li, Shan Yang, Aishu Ren, Hongwei Dai
| 期刊: | Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology | 影响因子: | 0.000 |
| 时间: | 2015 | 起止号: | 2015 Feb;33(1):35-9 |
| doi: | 10.7518/hxkq.2015.01.008 | 研究方向: | 信号转导、细胞生物学 |
| 信号通路: | Wnt/β-Catenin | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
