GABAergic neurotransmitter systems are important for many cognitive processes, including learning and memory. We identified a single neuron in each hemisphere of the Drosophila brain, the anterior paired lateral (APL) neuron, as a GABAergic neuron that broadly innervated the mushroom bodies. Reducing GABA synthesis in the APL neuron enhanced olfactory learning, suggesting that the APL neuron suppressed learning by releasing the inhibitory neurotransmitter GABA. Functional optical-imaging experiments revealed that the APL neuron responded to both odor and electric-shock stimuli that was presented to the fly with increases of intracellular calcium and released neurotransmitter. Notably, a memory trace formed in the APL neuron by pairing odor with electric shock. This trace was detected as a reduced calcium response in the APL neuron after conditioning specifically to the trained odor. These results demonstrate a mutual suppression between the GABAergic APL neuron and olfactory learning, and emphasize the functional neuroplasticity of the GABAergic system as a result of learning.
The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning.
GABA能前侧成对神经元抑制嗅觉学习,同时也被嗅觉学习抑制
阅读:4
作者:Liu Xu, Davis Ronald L
| 期刊: | Nature Neuroscience | 影响因子: | 20.000 |
| 时间: | 2009 | 起止号: | 2009 Jan;12(1):53-9 |
| doi: | 10.1038/nn.2235 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
