Retinal ischemia is a significant pathological condition that contributes to visual impairment and neuronal cell death in various retinopathies. Evidence suggests that GABA release during ischemic events may exhibit neuroprotective properties, but conflicting findings highlight a potential shift in its effects due to altered chloride ion homeostasis. This study aimed to investigate the role of the GABAergic system in retinal ischemia, focusing on the temporal dynamics of GABA release and its impact on retinal damage. We hypothesized that ischemia-induced changes in GABA transport and chloride ion equilibrium contribute to neuronal damage, which can be mitigated by modulating GABAergic activity. Using an ex vivo chick retina model subjected to oxygen and glucose deprivation (OGD), during different times, we assessed morphological changes, cell death, GABA levels, transporter activity, and the levels of chloride cotransporters NKCC1 and KCC2. Pharmacological interventions, including picrotoxin and bumetanide, were used to evaluate neuroprotective effects. Our results revealed that OGD-induced significant morphological changes and cell death in the retina. GABA levels were reduced in a GAT-1-dependent manner, while picrotoxin and bumetanide demonstrated neuroprotective effects by mitigating retinal swelling and modulating the GABAergic system. Notably, OGD increased NKCC1 content, but not KCC2 levels, indicating a disruption in chloride homeostasis. These findings suggest that ischemia-induced alterations in GABAergic activity and chloride transport contribute to retinal damage. Targeting these pathways with pharmacological agents, such as bumetanide, may offer therapeutic strategies for mitigating ischemic retinal injury. Further research is recommended to explore the clinical applicability of these findings in the ischemic retina.
Modulation of GABAergic System in a Chicken Retinal Ischemic Model: The Role of Chloride Cotransporters.
鸡视网膜缺血模型中 GABA 能系统的调节:氯离子共转运蛋白的作用
阅读:18
作者:Nascimento A A, Miya-Coreixas V S, Araújo D S M, Nascimento T H O, Santos G F, Brito R, Calaza K C
| 期刊: | Journal of Neuroscience Research | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 May;103(5):e70043 |
| doi: | 10.1002/jnr.70043 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
