Ultrastructural Localization of Glutamate Delta Receptor 1 in the Rodent and Primate Lateral Habenula.

啮齿动物和灵长类动物外侧缰核中谷氨酸δ受体1的超微结构定位

阅读:3
作者:Choi Diane, Paré Jean-Francois, Dravid Shashank, Smith Yoland
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1. Thus, disruption in GluD1 synaptic signaling may contribute to LHb dysfunction and the pathophysiology of LHb-associated disorders. Despite its strong cellular expression, little is known about the subsynaptic and subcellular localization of GluD1 in LHb neurons. Given that GluD1 is involved in the development and/or regulation of glutamatergic and GABAergic synapses in various brain regions, a detailed map of GluD1 synaptic localization is essential to elucidate its role in the LHb. To address this issue, we used immunoelectron microscopy methods in rodents and monkeys. In both species, GluD1 immunoreactivity was primarily expressed in dendritic profiles, with lower expression in somata, spines, and glial elements. Pre- and post-embedding immunogold experiments revealed strong GluD1 expression in the core of symmetric GABAergic synapses. Albeit less frequent, GluD1 was also found at the edges (i.e., perisynaptic) of asymmetric, putative glutamatergic synapses. Through the combination of anterograde tracing with immunogold labeling in rats, we showed that axon terminals from the entopeduncular nucleus and the lateral hypothalamus express postsynaptic GluD1 immunolabeling in the LHb. Our findings suggest that GluD1 may play a critical role in modulating GABAergic transmission in the rodent and primate LHb.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。