Thermoanaerobacterium saccharolyticum is a thermophilic anaerobic bacterium that natively ferments a variety of hemicellulose substrates to organic acids and alcohols. It has recently been engineered to produce ethanol at high yield and titer; however, it uses a unique metabolic pathway for ethanol production that is poorly characterized. One of the distinctive aspects of this pathway is the presence of acetyl-CoA as an intermediate metabolite. In this organism, acetyl-CoA is converted to ethanol by a bifunctional AdhE enzyme. This enzyme has been a frequent target for mutations, and in many cases, the function of these mutations was unknown. Using a combination of genetic modifications, enzyme assays, and computational analysis, we have developed a better understanding of how mutations in AdhE affect ethanol production in the engineered homoethanologen strain. We identify a set of approximately interchangeable AdhE mutations (G544D, T597K, T597I, and T605I), whose function is to disrupt the activity of the alcohol dehydrogenase (ADH) domain of AdhE. This reduces NADH-linked ADH activity, which dramatically increases ethanol tolerance and changes the overall stoichiometry of acetaldehyde to ethanol conversion. Furthermore, our improved understanding of the function of these AdhE mutations calls into question a proposed feature of AdhE enzymes known as substrate channeling-direct transfer of acetaldehyde between the two domains of the AdhE enzyme. This improved the understanding of the role of AdhE mutations in T. saccharolyticum and provides deeper insights into the function of the unique ethanol production pathway in this organism. IMPORTANCE: Many anaerobic bacteria maintain redox equilibrium by producing reduced organic compounds such as ethanol. The final two steps of ethanol production are mediated by a bifunctional enzyme, AdhE, and this enzyme is a frequent target of mutations in strains engineered for increased ethanol production. Paradoxically, these mutations increase ethanol production by eliminating the activity of one domain of the AdhE enzyme (the ADH domain). This provides additional support for a redox-imbalance theory of alcohol tolerance, which challenges the prevailing hypothesis that alcohol tolerance is associated with cell membrane effects.
The role of AdhE mutations in Thermoanaerobacterium saccharolyticum.
AdhE 突变在嗜热厌氧菌糖化菌中的作用
阅读:7
作者:Fabri João Henrique T M, Pech-Canul Angel, Ziegler Samantha J, Burgin Tucker Emme, Richardson Isaiah D, Maloney Marybeth I, Bomble Yannick J, Lynd Lee R, Olson Daniel G
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 May 22; 207(5):e0001525 |
| doi: | 10.1128/jb.00015-25 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
