Glucose-sensing ChREBP and MondoA are transcriptional factors involved in lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBP(RP) mice with constitutively active (ca) ChREBP. These mice underwent retinal function testing, followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19(ChREBP)) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration as we observed diminished scotopic ERG amplitudes detected in caChREB-P(RP) mice at P35. The retinal proteomic landscape indicated a decline in KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific ca-ChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19(ChREBP) cells displayed a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprograming triggering retinal functional loss in mice.
Glucose-Sensing ChREBP Protein in the Pathogenesis of Dia-betic Retinopathy.
葡萄糖感应 ChREBP 蛋白在糖尿病视网膜病变发病机制中的作用
阅读:4
作者:Starr Christopher R, Zhylkibayev Assylbek, Gorbatyuk Oleg, Nuotio-Antar Alli M, Mobley James, Grant Maria B, Gorbatyuk Marina
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 8 |
| doi: | 10.1101/2024.12.04.626828 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
