TTK/hMps1 mediates the p53-dependent postmitotic checkpoint by phosphorylating p53 at Thr18.

TTK/hMps1 通过在 Thr18 位点磷酸化 p53 来介导 p53 依赖的有丝分裂后检查点

阅读:3
作者:Huang Yi-Fu, Chang Margaret Dah-Tsyr, Shieh Sheau-Yann
Upon prolonged arrest in mitosis, cells undergo adaptation and exit mitosis without cell division. These tetraploid cells are either eliminated by apoptosis or arrested in the subsequent G(1) phase in a spindle checkpoint- and p53-dependent manner. p53 has long been known to be activated by spindle poisons, such as nocodazole and Taxol, although the underlying mechanism remains elusive. Here we present evidence that stabilization and activation of p53 by spindle disruption requires the spindle checkpoint kinase TTK/hMps1. TTK/hMps1 phoshorylates the N-terminal domain of p53 at Thr18, and this phosphorylation disrupts the interaction with MDM2 and abrogates MDM2-mediated p53 ubiquitination. Phosphorylation at Thr18 enhances p53-dependent activation of not only p21 but also Lats2, two mediators of the postmitotic checkpoint. Furthermore, a phospho-mimicking substitution at Thr18 (T18D) is more competent than the phospho-deficient mutant (T18A) in rescuing the tetraploid checkpoint defect of p53-depleted cells. Our findings therefore provide a mechanism connecting the spindle checkpoint with p53 in the maintenance of genome stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。