Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling.
Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells.
凡德他尼对大鼠嗜铬细胞瘤PC12细胞儿茶酚胺合成的抑制作用
阅读:4
作者:Itoh Yoshihiko, Inagaki Kenichi, Terasaka Tomohiro, Morimoto Eisaku, Ishii Takahiro, Yamaoka Kimitomo, Fujisawa Satoshi, Wada Jun
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 26(14):6927 |
| doi: | 10.3390/ijms26146927 | 种属: | Rat |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
