The mammary gland epithelium relies on a delicate balance between basal and luminal cell lineages to maintain tissue homeostasis and enable proper development. While the role of canonical Wnt signaling in mammary biology is well-established, the contribution of noncanonical Wnt signaling to lineage identity has remained unclear. Noncanonical Wnt pathways are primarily associated with morphogenesis, cytoskeletal regulation, and cell migration, but whether they are required for maintaining epithelial cell fate remains largely unexplored. Here, we demonstrate that the noncanonical Wnt receptor Ror2 is expressed in both basal and luminal lineages, yet selectively maintained in basal cells throughout development, suggesting a lineage-specific function. Using a p63(CreERT2/+) lineage-specific mouse model, we show that Ror2 deletion in basal epithelial cells enhances secondary and tertiary branching while driving a basal-to-luminal fate transition, marked by downregulation of basal markers (K14, K5) and upregulation of luminal markers (K8, K18, ERα). Mechanistically, Ror2 loss disrupts RhoA-ROCK1-YAP1 signaling, leading to cytoskeletal reorganization, chromatin remodeling, and increased accessibility at luminal regulatory loci. Notably, ROCK1 inhibition phenocopies Ror2 loss, reinforcing the critical role of the RhoA-ROCK1 axis in basal cell maintenance. These findings provide direct genetic and mechanistic evidence that noncanonical Wnt signaling is essential for maintaining basal lineage fidelity, offering new insights into the mechanisms regulating epithelial plasticity. Given the fundamental importance of lineage stability in epithelial homeostasis, our results suggest that disruptions in Wnt/Ror2 signaling may contribute to aberrant fate transitions relevant to breast cancer progression.
Noncanonical Wnt/Ror2 Signaling Regulates Basal Cell Fidelity and Branching Morphogenesis in the Mammary Gland.
非经典 Wnt/Ror2 信号通路调节乳腺基底细胞的保真度和分支形态发生
阅读:3
作者:Si Hongjiang, Mendoza Mendoza Erika, Esquivel Madelyn, Creighton Chad J, Xu Jianming, Roarty Kevin
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 25 |
| doi: | 10.1101/2025.02.25.640099 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
