The polyamine transporter ATP13A3 mediates difluoromethylornithine-induced polyamine uptake in neuroblastoma.

多胺转运蛋白 ATP13A3 介导二氟甲基鸟氨酸诱导的神经母细胞瘤多胺摄取

阅读:6
作者:Azfar Mujahid, Gao Weiman, Van den Haute Chris, Xiao Lin, Karsa Mawar, Pandher Ruby, Karsa Ayu, Spurling Dayna, Ronca Emma, Bongers Angelika, Guo Xinyi, Mayoh Chelsea, Fayt Youri, Schoofs Arthur, Burns Mark R, Verhelst Steven H L, Norris Murray D, Haber Michelle, Vangheluwe Peter, Somers Klaartje
High-risk neuroblastomas, often associated with MYCN protooncogene amplification, are addicted to polyamines, small polycations vital for cellular functioning. We have previously shown that neuroblastoma cells increase polyamine uptake when exposed to the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), and this mechanism is thought to limit the efficacy of the drug in clinical trials. This finding resulted in the clinical development of polyamine transport inhibitors, including AMXT 1501, which is presently under clinical investigation in combination with DFMO. However, the mechanisms and transporters involved in DFMO-induced polyamine uptake are unknown. Here, we report that knockdown of ATPase 13A3 (ATP13A3), a member of the P5B-ATPase polyamine transporter family, limited basal and DFMO-induced polyamine uptake, attenuated MYCN-amplified and non-MYCN-amplified neuroblastoma cell growth, and potentiated the inhibitory effects of DFMO. Conversely, overexpression of ATP13A3 in neuroblastoma cells increased polyamine uptake, which was inhibited by AMXT 1501, highlighting ATP13A3 as a key target of the drug. An association between high ATP13A3 expression and poor survival in neuroblastoma further supports a role of this transporter in neuroblastoma progression. Thus, this study identified ATP13A3 as a critical regulator of basal and DFMO-induced polyamine uptake and a novel therapeutic target for neuroblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。