Multiplexed In Vivo Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents.

利用条形码适体技术进行多重体内筛选,以鉴定基于寡核苷酸的靶向试剂

阅读:5
作者:Thomas Brian J, Guldenpfennig Caitlyn, Daniels Mark A, Burke Donald H, Porciani David
Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。