BRG1 mutations found in human cancer cell lines inactivate Rb-mediated cell-cycle arrest.

在人类癌细胞系中发现的 BRG1 突变会使 Rb 介导的细胞周期阻滞失活

阅读:4
作者:Bartlett Christopher, Orvis Tess J, Rosson Gary S, Weissman Bernard E
Eukaryotic organisms package DNA into chromatin for compact storage in the cell nucleus. However, this process promotes transcriptional repression of genes. To overcome the transcriptional repression, chromatin remodeling complexes have evolved that alter the configuration of chromatin packaging of DNA into nucleosomes by histones. The SWI/SNF chromatin remodeling complex uses energy from ATP hydrolysis to reposition nucleosomes and make DNA accessible to transcription factors. Recent studies showing mutations of BRG1, one of two mutually exclusive ATPase subunits, in human tumor cell lines and primary tissue samples have implicated a role for its loss in cancer development. While most of the mutations lead to complete loss of BRG1 protein expression, others result in single amino acid substitutions. To better understand the role of these BRG1 point mutations in cancer development, we characterized SWI/SNF function in human tumor cell lines with these mutations in the absence of BRM expression, the other ATPase component. We found that the mutant BRG1 proteins still interacted with the core complex members and appeared at the promoters of target genes. However, while these mutations did not affect CD44 and CDH1 expression, known targets of the SWI/SNF complex, they did abrogate Rb-mediated cell-cycle arrest. Therefore, our results implicate that these mutations disrupt the de novo chromatin remodeling activity of the complex without affecting the status of existing nucleosome positioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。