Biological clocks with a period of approximately 24 h (circadian) exist in most organisms and time a variety of functions, including sleep-wake cycles, hormone release, bioluminescence, and core body temperature fluctuations. Much of our understanding of the clock mechanism comes from the identification of specific mutations that affect circadian behavior. A widely studied mutation in casein kinase I (CKI), the CKIepsilon(tau) mutant, has been shown to cause a loss of kinase function in vitro, but it has been difficult to reconcile this loss of function with the current model of circadian clock function. Here we show that mathematical modeling predicts the opposite, that the kinase mutant CKIepsilon(tau) increases kinase activity, and we verify this prediction experimentally. CKIepsilon(tau) is a highly specific gain-of-function mutation that increases the in vivo phosphorylation and degradation of the circadian regulators PER1 and PER2. These findings experimentally validate a mathematical modeling approach to a complex biological function, clarify the role of CKI in the clock, and demonstrate that a specific mutation can be both a gain and a loss of function depending on the substrate.
An opposite role for tau in circadian rhythms revealed by mathematical modeling.
数学建模揭示了 tau 在昼夜节律中扮演的相反角色
阅读:6
作者:Gallego Monica, Eide Erik J, Woolf Margaret F, Virshup David M, Forger Daniel B
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2006 | 起止号: | 2006 Jul 11; 103(28):10618-23 |
| doi: | 10.1073/pnas.0604511103 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
