BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have attracted significant interest for use in disease modeling, drug discovery and potential therapeutic applications. However, conventional hiPSC-CM cryopreservation protocols largely use dimethyl sulfoxide (DMSO) as the cryoprotectant (CPA), which is linked with a loss of post-thaw recovery and function for various cell types and is not ideal for therapeutic protocols. Additionally, the effect of freezing parameters such as cooling rate and nucleation temperature on post-thaw recovery of hiPSC-CMs has not been explored. METHODS: hiPSC-CMs were generated by Wnt pathway inhibition, followed by sodium l-lactate purification. Subsequently, biophysical characterization of the cells was performed. A differential evolution (DE) algorithm was utilized to determine the optimal composition of a mixture of a sugar, sugar alcohol and amino acid to replace DMSO as the CPA. The hiPSC-CMs were subjected to controlled-rate freezing at different cooling rates and nucleation temperatures. The optimum freezing parameters were identified by post-thaw recoveries and the partitioning ratio obtained from low temperature Raman spectroscopy studies. The post-thaw osmotic behavior of hiPSC-CMs was studied by measuring diameter of cells resuspended in the isotonic culture medium over time. Immunocytochemistry and calcium transient studies were performed to evaluate post-thaw function. RESULTS: hiPSC-CMs were found to be slightly larger than hiPSCs and exhibited a large osmotically inactive volume. The best-performing DMSO-free solutions enabled post-thaw recoveries over 90%, which was significantly greater than DMSO (69.4â±â6.4%). A rapid cooling rate of 5 °C/min and a low nucleation temperature of -8 °C was found to be optimal for hiPSC-CMs. hiPSC-CMs displayed anomalous osmotic behavior post-thaw, dropping sharply in volume after resuspension. Post-thaw function was preserved when hiPSC-CMs were frozen with the best-performing DMSO-free CPA or DMSO and the cells displayed similar cardiac markers pre-freeze and post-thaw. CONCLUSIONS: It was shown that a CPA cocktail of naturally-occurring osmolytes could effectively replace DMSO for preserving hiPSC-CMs while preserving morphology and function. Understanding the anomalous osmotic behavior and managing the excessive dehydration of hiPSC-CMs could be crucial to improve post-thaw outcomes. Effective DMSO-free cryopreservation would accelerate the development of drug discovery and therapeutic applications of hiPSC-CMs.
DMSO-free cryopreservation of hiPSC-derived cardiomyocytes: low temperature characterization and protocol development.
无DMSO冷冻保存hiPSC衍生的心肌细胞:低温特性和方案开发
阅读:3
作者:Mallya Akshat S, Burrows Tessa, Hsieh Jeanne, Louwagie Troy, Dutton James R, Ogle Brenda M, Hubel Allison
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 10; 16(1):301 |
| doi: | 10.1186/s13287-025-04384-5 | 研究方向: | 细胞生物学 |
| 疾病类型: | 心肌炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
