Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome.

志贺氏菌 OspF 阻断 NAIP-NLRC4 炎症小体的 p38 依赖性快速启动

阅读:7
作者:Turcotte Elizabeth A, Kim Kyungsub, Eislmayr Kevin D, Goers Lisa, Mitchell Patrick S, Lesser Cammie F, Vance Russell E
The NAIP-NLRC4 inflammasome senses pathogenic bacteria by recognizing the cytosolic presence of bacterial proteins such as flagellin and type III secretion system (T3SS) subunits. In mice, the NAIP-NLRC4 inflammasome provides robust protection against bacterial pathogens that infect intestinal epithelial cells, including the gastrointestinal pathogen Shigella flexneri. By contrast, humans are highly susceptible to Shigella, despite the ability of human NAIP-NLRC4 to robustly detect Shigella T3SS proteins. Why the NAIP-NLRC4 inflammasome protects mice but not humans against Shigella infection remains unclear. We previously found that human THP-1 cells infected with Shigella lose responsiveness to NAIP-NLRC4 stimuli, while retaining sensitivity to other inflammasome agonists. Using mT3Sf, a "minimal Shigella" system, to express individual secreted Shigella effector proteins, we found that the OspF effector specifically suppresses NAIP-NLRC4-dependent cell death during infection. OspF was previously characterized as a phosphothreonine lyase that inactivates p38 and ERK MAP kinases. We found that p38 was critical for rapid priming of NAIP-NLRC4 activity, particularly in cells with low NAIP-NLRC4 expression. Overall, our results provide a mechanism by which Shigella evades inflammasome activation in humans, and describe a new mechanism for rapid priming of the NAIP-NLRC4 inflammasome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。