Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.

转录沉默蛋白及其组装所依赖的DNA元件的共同进化

阅读:4
作者:Zill Oliver A, Scannell Devin, Teytelman Leonid, Rine Jasper
Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1) proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。