APP, APLP2 and LRP1 interact with PCSK9 but are not required for PCSK9-mediated degradation of the LDLR in vivo.

APP、APLP2 和 LRP1 与 PCSK9 相互作用,但并非 PCSK9 介导的 LDLR 在体内降解所必需的

阅读:8
作者:Fu Ting, Guan YangYang, Xu Junjie, Wang Yan
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that post-transcriptionally regulates the levels of hepatic low-density lipoprotein receptors (LDLRs). PCSK9 binds to the extracellular domain of the LDLR, and the PCSK9-LDLR complex is internalized through canonical clathrin-dependent endocytosis and then delivered to lysosomes for degradation. The mechanism by which PCSK9 blocks recycling of the LDLR has not been fully defined. Previous reports showed that amyloid precursor-like protein 2 (APLP2) interacts with PCSK9, but its role in PCSK9-mediated LDLR degradation remains controversial. Here we found that amyloid precursor protein (APP), APLP2 and LDL receptor-related protein 1 (LRP1) interact with PCSK9. To test whether any of these proteins are required for PCSK9-mediated LDLR degradation, we examined the effects of disrupting these proteins in mice. Infusion of PCSK9 into App(-/-), Aplp2(-/-), Aplp2-depleted App(-/-), or liver-specific Lrp1(-/-) mice resulted in similar reductions in the levels of hepatic LDLR as seen in wild-type (WT) mice. Infusion of PCSK9 into WT mice also had no effect on the levels of hepatic APP, APLP2 or LRP1. Thus, APP, APLP2 and LRP1 are not required for PCSK9-mediated LDLR degradation and are not regulated by PCSK9 in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。