Structure of an ex vivoDrosophila TOM complex determined by single-particle cryoEM.

利用单颗粒冷冻电镜技术确定离体果蝇TOM复合物的结构

阅读:9
作者:Periasamy Agalya, Ornelas Pamela, Bausewein Thomas, Mitchell Naomi, Zhao Jiamin, Quinn Leonie M, Kuehlbrandt Werner, Gulbis Jacqueline M
Most mitochondrial precursor proteins are encoded in the cell nucleus and synthesized on cytoplasmic ribosomes. The translocase of the outer membrane (TOM) is the main protein-import pore of mitochondria, recognizing nascent precursors of mitochondrially targeted proteins and transferring them across the outer membrane. A 3.3†à resolution map and molecular model of a TOM complex from Drosophila melanogaster, obtained by single-particle electron cryomicroscopy, is presented. As the first reported structure of a transgenic protein expressed and purified ex vivo from Drosophila, the method provides impetus for parallel structural and genetic analyses of protein complexes linked to human pathology. The core TOM complex extracted from native membranes of the D. melanogaster retina contains transgenic Tom40 co-assembled with four endogenous TOM components: Tom22, Tom5, Tom6 and Tom7. The Drosophila TOM structure presented here shows that the human and Drosophila TOM are very similar, with small conformational changes at two subunit interfaces attributable to variation in lipid-binding residues. The new structure provides an opportunity to pinpoint general features that differentiate the TOM structures of higher and unicellular eukaryotes. While the quaternary fold of the assembly is retained, local nuances of structural elements implicated in precursor import are indicative of subtle evolutionary change.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。