27-Hydroxycholesterol Alters Synaptic Structural and Functional Plasticity in Hippocampal Neuronal Cultures

27-羟基胆固醇改变海马神经元培养中的突触结构和功能可塑性

阅读:6
作者:Yushan Wang, Yu An, Dandi Zhang, Huiyan Yu, Xiaona Zhang, Ying Wang, Lingwei Tao, Rong Xiao

Abstract

This study aimed to explore the neurotoxic effects of 27-hydroxycholesterol (27-OHC), a major circulating cholesterol active derivative in brain on synaptic structural and functional plasticity in primary hippocampal neurons. Newborn SD rat primary hippocampal neurons were treated with 0, 1, 3, 10, and 30 μM 27-OHC for 24 hours. MTT and CCK-8 assays were used to monitor the cell viability of neurons with different treatments. Neurite morphology was assessed by staining for microtubule-associated protein-2 (MAP2) and analyzed by immunofluorescence. Synaptic ultrastructure was evaluated by transmission electron microscopy. Real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression of key synaptic proteins: synaptophysin (SYP), postsynaptic density protein-95 (PSD-95), synaptosomal-associated protein 25 (SNAP-25), growth-associated protein-43 (GAP-43), MAP2, and activity-regulated cytoskeleton-associated protein (Arc). Treatment with 27-OHC at various doses stimulated cell death and resulted in significant decreases in neurite number and length, alteration of synaptic ultrastructure, and downregulated expression of synaptic proteins in a dose-dependent manner. These results suggest that 27-OHC is deleterious for synaptic structural and functional plasticity, which may partially account for its neurotoxic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。