BCAS2 promotes primitive hematopoiesis by sequestering β-catenin within the nucleus.

BCAS2 通过将β-catenin隔离在细胞核内来促进原始造血

阅读:4
作者:Ning Guozhu, Lin Yu, Ma Haixia, Zhang Jiaqi, Yang Liping, Liu Zhengyu, Li Lei, He Xinyu, Wang Qiang
Breast carcinoma amplified sequence 2 (BCAS2), a core component of the hPrP19 complex, plays crucial roles in various physiological and pathological processes. However, whether BCAS2 has functions other than being a key RNA-splicing regulator within the nucleus remains unknown. Here, we show that BCAS2 is essential for primitive hematopoiesis in zebrafish and mouse embryos. The activation of Wnt/β-catenin signaling, which is required for hematopoietic progenitor differentiation, is significantly decreased upon depletion of bcas2 in zebrafish embryos and mouse embryonic fibroblasts. Interestingly, BCAS2 deficiency has no obvious impact on the splicing efficiency of β-catenin pre-mRNA, while significantly attenuating β-catenin nuclear accumulation. Moreover, we find that BCAS2 directly binds to β-catenin via its coiled-coil domains, thereby sequestering β-catenin within the nucleus. Thus, our results uncover a previously unknown function of BCAS2 in promoting Wnt signaling by enhancing β-catenin nuclear retention during primitive hematopoiesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。