Discovery and Mechanism of 16-19F, a Novel Synthetic Lethal Inhibitor of the PRMT5•MTA Complex in MTAP-Deleted Cancer Cells.

发现并阐明了 16-19F 的作用机制,它是一种新型的 PRMT5•MTA 复合物合成致死抑制剂,作用于 MTAP 缺失的癌细胞

阅读:4
作者:Shen Zhihang, Yang Xiaozhi, Seabra Gustavo, Xu Xueyong, Dong Jiawei, Brant Jason Orr, Zhou Wei, Guan Juan, Jiang Wen, Li Chenglong
Protein arginine methyltransferase 5 (PRMT5), which uniquely binds to 5'-methylthioadenosine (MTA) among the PRMT family, is emerging as an attractive epigenetic target for 5'-methylthioadenosine phosphorylase (MTAP)-deleted cancer treatments. Here, we report the discovery of a novel inhibitor 16-19F, which is a potent binder to the PRMT5•MTA, PRMT5•SAH, and PRMT5•SAM complexes and selectively inhibited MTAP-deleted cancer cell growth. Based on transcriptome analysis, we found that kinetochore metaphase signaling and cell cycle control of the chromosomal replication pathway were downregulated after 16-19F treatment in the MDA-MB-231 TNBC cell line. Additionally, we identified a new PRMT5 substrate, MCM7, an important component of DNA helicase, and figured out the potential methylation site Arg219 by site-directed mutagenesis and computational analysis. Moreover, we showed that 16-19F treatment regulated MCM7 localization, which is involved through liquid-liquid phase separation mechanisms, including the formation of stress granules. Together, we discovered a potential novel drug candidate and revealed an unknown mechanism in which PRMT5 methylation altered MCM7 localization by modulating stress granule formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。