Spatial control of secretory vesicle targeting by the Ync13-Rga7-Rng10 complex during cytokinesis.

胞质分裂过程中 Ync13-Rga7-Rng10 复合物对分泌囊泡靶向的空间控制

阅读:4
作者:Zhang Sha, Singh Davinder, Zhu Yi-Hua, Zhang Katherine J, Melero Alejandro, Martin Sophie G, Wu Jian-Qiu
Cytokinesis requires precise coordination of contractile-ring constriction, vesicle trafficking and fusion to the plasma membrane, and extracellular matrix assembly/remodeling at the cleavage furrow to ensure faithful cell division and maintain cell integrity. These processes and proteins involved are broadly conserved across eukaryotes, yet molecular mechanisms controlling the spatiotemporal pathways of membrane trafficking remain poorly understood. Here, using fission yeast genetics, microscopy, and in vitro binding assays, we identify a conserved module including the Munc13 protein Ync13, F-BAR protein Rga7, and coiled-coil protein Rng10 to be critical for precise and selective vesicle targeting during cytokinesis. The module specifically recruit the TRAPP-II but not exocyst complex to tether vesicles containing the glucan synthases Bgs4 and Ags1 along the cleavage furrow. Ync13 subsequently interacts with the SM protein Sec1 for vesicle fusion. Mutations in this pathway disrupt septum integrity and lead to cell lysis. Our work provides key insights into how membrane trafficking is tightly controlled to maintain cell integrity during cytokinesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。