A single nucleotide incorporation step limits human telomerase repeat addition activity.

单个核苷酸的掺入步骤限制了人类端粒酶重复序列的添加活性

阅读:4
作者:Chen Yinnan, Podlevsky Joshua D, Logeswaran Dhenugen, Chen Julian J-L
Human telomerase synthesizes telomeric DNA repeats (GGTTAG)(n) onto chromosome ends using a short template from its integral telomerase RNA (hTR). However, telomerase is markedly slow for processive DNA synthesis among DNA polymerases. We report here that the unique template-embedded pause signal restricts the first nucleotide incorporation for each repeat synthesized, imparting a significantly greater K(M) This slow nucleotide incorporation step drastically limits repeat addition processivity and rate under physiological conditions, which is alleviated with augmented concentrations of dGTP or dGDP, and not with dGMP nor other nucleotides. The activity stimulation by dGDP is due to nucleoside diphosphates functioning as substrates for telomerase. Converting the first nucleotide of the repeat synthesized from dG to dA through the telomerase template mutation, hTR-51U, correspondingly shifts telomerase repeat addition activity stimulation to dATP-dependent. In accordance, telomerase without the pause signal synthesizes DNA repeats with extremely high efficiency under low dGTP concentrations and lacks dGTP stimulation. Thus, the first nucleotide incorporation step of the telomerase catalytic cycle is a potential target for therapeutic enhancement of telomerase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。