Single-Cell and Spatial Transcriptomics Identified Fatty Acid-Binding Proteins Controlling Endothelial Glycolytic and Arterial Programming in Pulmonary Hypertension

单细胞和空间转录组学鉴定出控制肺动脉高压中内皮糖酵解和动脉编程的脂肪酸结合蛋白

阅读:2
作者:Bin Liu ,Dan Yi ,Shuai Li ,Karina Ramirez ,Xiaomei Xia ,Yanhong Cao ,Hanqiu Zhao ,Ankit Tripathi ,Shenfeng Qiu ,Mrinalini Kala ,Ruslan Rafikov ,Haiwei Gu ,Vinicio de Jesus Perez ,Sarah-Eve Lemay ,Christopher C Glembotski ,Kenneth S Knox ,Sebastien Bonnet ,Vladimir V Kalinichenko ,You-Yang Zhao ,Michael B Fallon ,Olivier Boucherat ,Zhiyu Dai
BACKGROUND: Pulmonary arterial hypertension (PAH) is a devastating disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for patients with PAH. Recent studies showed that FABP (fatty acid-binding protein) 4 and FABP5 are expressed in endothelial cells (ECs) across multiple tissues, and circulating FABP4 level is elevated in patients with PAH. However, the role of endothelial FABP4/5 in the pathogenesis of PAH remains undetermined. METHODS: FABP4/5 expression was examined in pulmonary arterial ECs and lung tissues from patients with idiopathic PAH and pulmonary hypertension (PH) rat models. Plasma proteome analysis was performed in human PAH samples. Echocardiography, hemodynamics, histology, and immunostaining were performed to evaluate the lung and heart PH phenotypes in Egln1(Tie2Cre) (CKO) mice and Egln1(Tie2Cre)/Fabp4/5(-/-) (TKO) mice. Bulk RNA sequencing (RNA-seq), single-cell RNA sequencing analysis, and spatial transcriptomic analysis were performed to understand the cellular and molecular mechanisms of endothelial FABP4/5-mediated PAH pathogenesis. RESULTS: Both FABP4 and FABP5 were highly induced in ECs of CKO mice and pulmonary arterial ECs from patients with idiopathic PAH (IPAH) and in whole lungs of PH rats. Plasma levels of FABP4/5 were upregulated in patients with IPAH and directly correlated with severity of hemodynamics and biochemical parameters. Genetic deletion of both Fabp4 and Fabp5 in CKO mice caused a reduction of right ventricular systolic pressure and right ventricular hypertrophy, attenuated pulmonary vascular remodeling, and prevented the right heart failure secondary to PH. FABP4/5 deletion also normalized EC glycolysis and distal arterial programming, reduced reactive oxygen species and HIF (hypoxia-inducible factor)-2α expression, and decreased aberrant EC proliferation in CKO lungs. CONCLUSIONS: PH causes aberrant expression of FABP4/5 in pulmonary ECs, which leads to enhanced EC glycolysis and distal arterial programming, contributing to the accumulation of arterial ECs and vascular remodeling and exacerbating the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。