Background: Thyroid eye disease (TED) is an autoimmune disorder characterized by proptosis, inflammation, and fibrosis. Elevated insulin-like growth factor 1 receptor (IGF1R) signaling in TED orbital fibroblasts (OFs) drives the proliferation and biosynthesis of hyaluronan, which causes enlargement of orbital tissue volume. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular stress responses, metabolism, and inflammation. Given its important role in regulating cellular responses, we hypothesized that activation of the AHR could limit excessive IGF1R signaling in TED OFs, offering therapeutic potential. Methods: We measured IGF1R and AHR expression levels in TED, non-TED, and non-OF controls. OF activation was analyzed using proliferation, hyaluronan accumulation, and migration assays. RNA sequencing was used to detect transcriptome-wide changes in IGF1-treated TED OFs. After gene set enrichment analysis, select gene expression changes were validated by quantitative polymerase chain reaction. OFs were treated with the AHR ligands 6-formylindolo[3,2-b]carbazole (FICZ) or tapinarof with or without IGF1. Western blotting evaluated signaling pathways impacted by AHR and IGF1R signaling. Results: TED OFs showed elevated IGF1R and AHR expression levels compared to controls. IGF1 significantly increased hyaluronan accumulation, proliferation, and migration in TED OFs compared to non-TED OFs. IGF1R signaling altered the expression of hundreds of genes controlling cell migration, proliferation, and metabolism in TED OFs. These genes included TUBA1B, TUBA1C, CRABP2 (upregulated), and IRS2 and SOD3 (downregulated). AHR activation blocked proliferation, migration, hyaluronan production, and gene expression mediated through IGF1R signaling. The AHR inhibited these pathways by reducing phosphorylation of GSK3β, an important mediator of IGF1R/β-catenin mediated signaling. Conclusions: AHR activation represents a promising therapeutic strategy for mitigating TED progression by inhibiting IGF1R signaling. Through modulation of GSK3β-mediated pathways, AHR activation may target additional pathologically relevant pathways beyond those affected by direct IGF1R inhibitors. This research provides novel insights into TED pathophysiology and offers a potential avenue for developing therapies to improve patient outcomes.
Targeting the Aryl Hydrocarbon Receptor to Attenuate IGF1R Signaling in Thyroid Eye Disease.
靶向芳烃受体以减弱甲状腺眼病中的IGF1R信号传导
阅读:6
作者:Roztocil Elisa, Husain Farha, Patrick Charkira C, Feldon Steven E, Woeller Collynn F
| 期刊: | Thyroid | 影响因子: | 6.700 |
| 时间: | 2025 | 起止号: | 2025 May;35(5):527-542 |
| doi: | 10.1089/thy.2024.0529 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
