Menthone lowers H3K27ac levels to inhibit Fusarium proliferatum growth.

薄荷酮通过降低 H3K27ac 水平来抑制镰刀菌的生长

阅读:5
作者:Zhang Li-Yan, Li Tian-Tian, Liao Hong-Xin, Wen Jin-Rui, Nie Hong-Yan, Xu Fu-Rong, Liu Xiao-Yun, Dong Xian
BACKGROUND: The antifungal properties of essential oils (EOs) and their active constituents have been well documented. Histone acetylation is pivotal in modulating gene expression and influences biological processes in living organisms. RESULTS: This study demonstrated that menthone, the primary component of Mentha haplocalyx EO, exhibited notable antifungal activity against Fusarium proliferatum (EC50 = 6.099 mmol/L). The treatment significantly inhibited hyphal growth, reduced spore germination rates from 31.49 to 4.95%, decreased spore viability from 46.88 to 20.91%, and reduced spore production by a factor of 17.92 compared with the control group while simultaneously enhancing cell membrane permeability. However, the direct relationship between menthone and histone acetylation in inhibiting F. proliferatum remains nebulous. Our RNA sequencing (RNA-seq) analysis identified 7,332 differentially expressed genes (DEGs) between the control and menthone-treated groups, 3,442 upregulated and 3,880 downregulated, primarily enriched in pathways related to ribosome biogenesis and energy metabolism. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis revealed that menthone inhibited the growth of F. proliferatum by decreasing H3K27ac levels and interfering with the transcription of energy metabolism-related genes. By integrating the RNA-seq data with the ChIP-seq results, we identified 110 DEGs associated with reduced H3K27ac modification primarily associated with ribosome biogenesis. Menthone affected the growth of F. proliferatum by reducing the expression of ribosome biogenesis-related genes (FPRO_06392, FPRO_01260, FPRO_10795, and FPRO_01372). CONCLUSION: This study elucidated the mechanism by which menthone inhibits F. proliferatum growth from a histone acetylation modification perspective, providing insights into its application as an antifungal agent to prevent root rot in Panax notoginseng.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。