Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo.

脂质磷酸磷酸水解酶 1 型 (LPP1) 在体内降解细胞外溶血磷脂酸

阅读:4
作者:Tomsig Jose L, Snyder Ashley H, Berdyshev Evgeny V, Skobeleva Anastasia, Mataya Chifundo, Natarajan Viswanathan, Brindley David N, Lynch Kevin R
LPA (lysophosphatidic acid) is a lipid mediator that stimulates cell proliferation and growth, and is involved in physiological and pathological processes such as wound healing, platelet activation, angiogenesis and the growth of tumours. Therefore defining the mechanisms of LPA production and degradation are of interest in understanding the regulation of these processes. Extracellular LPA synthesis is relatively well understood, whereas the mechanisms of its degradation are not. One route of LPA degradation is dephosphorylation. A candidate enzyme is the integral membrane exophosphatase LPP1 (lipid phosphate phosphohydrolase type 1). In the present paper, we report the development of a mouse wherein the LPP1 gene (Ppap2a) was disrupted. The homozygous mice, which are phenotypically unremarkable, generally lack Ppap2a mRNA, and multiple tissues exhibit a substantial (35-95%) reduction in LPA phosphatase activity. Compared with wild-type littermates, Ppap2a(tr/tr) animals have increased levels of plasma LPA, and LPA injected intravenously is metabolized at a 4-fold lower rate. Our results demonstrate that LPA is rapidly metabolized in the bloodstream and that LPP1 is an important determinant of this turnover. These results indicate that LPP1 is a catabolic enzyme for LPA in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。