Refined DNA repair manipulation enables a universal knock-in strategy in mouse embryos.

精细的DNA修复操作使得在小鼠胚胎中实现通用的基因敲入策略成为可能

阅读:5
作者:Chen Hongyu, Tan Qingtong, Li Li, Li Lanxin, Fu Jiqiang, Zhu Wencheng, Li Jie, Wang Yining, Li Shiyan, Li Huimin, Sun Yidi, Sun Qiang, Lu Zongyang, Liu Zhen
The design and screening of sgRNA in CRISPR-dependent gene knock-in is always laborious. Therefore, a universal and highly efficient knock-in strategy suitable for different sgRNA target sites is necessary. In our mouse embryo study, we find that the knock-in efficiency guided by adjacent sgRNAs varies greatly, although similar indel frequency. MMEJ-biased sgRNAs usually lead to high knock-in efficiency, whereas NHEJ-biased sgRNAs result in low knock-in efficiency. Blocking MMEJ repair by knocking down Polq can enhance knock-in efficiency, but inhibiting NHEJ repair shows variable effects. We identify a compound, AZD7648, that can shift DSBs repair towards MMEJ. Finally, by combining AZD7648 treatment with Polq knockdown, we develop a universal and highly efficient knock-in strategy in mouse embryos. This approach is validated at more than ten genomic loci, achieving up to 90% knock-in efficiency, marking a significant advancement toward predictable and highly efficient CRISPR-mediated gene integration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。