Natriuretic Peptides (NPs), including atrial (ANP) and brain (BNP) types, exert pleiotropic effects in regulating immune responses via the Natriuretic Peptide Receptor-1 (NPR1), expressed across various immune cells. While NPs are established inhibitors of inflammasome activation and IL-1β secretion in human monocytes, their role in dendritic cells (DCs)-key regulators of innate and adaptive immunity-remains unclear. Inflammasome activation in DCs can yield both protective and detrimental outcomes depending on the context of the disease, suggesting that modulating this pathway could offer a promising pharmacological strategy for controlling immune responses. This study explored the regulation of the NLRP3 inflammasome by NPs in two conventional DC subsets: cDC1 and cDC2. We found that both subsets express basal levels of the NPR1 receptor, which increase under inflammatory conditions. Additionally, cDCs themselves produce ANP and BNP during inflammation. Although both subsets express basal levels of NLRP3 inflammasome proteins, cDC2 display a more robust NLRP3/IL-1β activation in response to LPSâ+âATP stimulation compared to cDC1. Notably, the NPs/NPR1 axis suppresses NLRP3 activation more effectively in the cDC2 subset by acting at translational and post-translational levels. These findings highlight NPs as a novel mechanism for controlling the inflammatory phenotype of cDCs and underscores NPs/NPR1 axis as therapeutic target for immune modulation of DC subsets.
Natriuretic peptides as novel regulators of dendritic cells-mediated inflammation.
利钠肽作为树突状细胞介导的炎症的新型调节因子
阅读:3
作者:Manni Giorgia, Barcelos Estevao Carlos Silva, Ricciuti Doriana, Pieroni Benedetta, Gargaro Marco, Mencarelli Giulia, Acha-Orbea Hans, Talesa Vincenzo Nicola, Mezzasoma Letizia, Fallarino Francesca
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 82(1):273 |
| doi: | 10.1007/s00018-025-05769-8 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
