Neuronostatin promotes soluble Aβ1-42 oligomers -induced spatial learning and memory impairments in mice

神经抑素促进可溶性 Aβ1-42 寡聚体诱导的小鼠空间学习和记忆障碍

阅读:7
作者:Shaobin Yang, Tingji Shao, Peng Yu, Ruidong Cao, Mingyu Zhang, Kang Wen, Maorong Fan, Bosheng He

Abstract

Neuronostatin (NST) is composed of a 13-amino acid and amidated peptide hormone encoded in the somatostatin (SST) gene, and plays an important physiological function in diverse tissues. Previous studies have shown that intracerebroventricular (i.c.v.) and intra-hippocampally administration of NST can significantly decrease the percentage of novel object exploration time in the step-down test. In this study, to define the contribution of NST to cognitive impairments induced by soluble Aβ42 oligomers (oAβ), along with the underlying mechanisms. This study used behavioral, biochemical and immunohistological methods to find that i.c.v. administration of NST (3 nmol/mouse) disrupted the ability of spatial learning and memory in mice, led to increase the levels of cAMP, GPR107 protein expression and phosphorylation of PKA at Thr197 in the cortex and hippocampus. NST promoted oAβ (1 nmol/mouse) -induced cognitive impairments, subsequently co-injection of NST and oAβ increased the levels of GPR107 expression and PKA phosphorylation, which also led to hyperactivation of GFAP in the cortex and neuroinflammation cytokines (IL-1β, IL-6 and TNFα) both in the cortex and hippocampus. Moreover, it was demonstrated that co-administration of NST and oAβ had increased the phosphorylation of Akt and GSK3β and reduced the levels of ATP and hexokinase (HK) activity in the cortex. Therefore, taken together, this study provided powerful insight into the mechanism of NST for memory impairments induced by oAβ, and may potentially serve as a promising target for future Alzheimer's disease interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。