Highly functional engineered skeletal muscle constructs could serve as physiological models of muscle function and regeneration and have utility in therapeutic replacement of damaged or diseased muscle tissue. In this study, we examined the roles of different myogenic cell fractions and culturing conditions in the generation of highly functional engineered muscle. Fibrin-based muscle bundles were fabricated using either freshly-isolated myogenic cells or their adherent fraction pre-cultured for 36 h. Muscle bundles made of these cells were cultured in both static and dynamic conditions and systematically characterized with respect to early myogenic events and contractile function. Following 2 weeks of culture, we observed both individual and synergistic benefits of using the adherent cell fraction and dynamic culture on muscle formation and function. In particular, optimal culture conditions resulted in significant increase in the total cross-sectional muscle area (- 3-fold), myofiber size (- 1.6-fold), myonuclei density (- 1.2-fold), and force generation (- 9-fold) compared to traditional use of freshly-isolated cells and static culture. Curiously, we observed that only a simultaneous use of the adherent cell fraction and dynamic culture resulted in accelerated formation of differentiated myofibers which were critical for providing a niche-like environment for maintenance of a satellite cell pool early during culture. Our study identifies key parameters for engineering large-size, highly functional skeletal muscle tissues with improved ability for retention of functional satellite cells.
Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells.
贴壁肌源细胞和动态培养在工程肌肉功能和卫星细胞维持中的作用
阅读:4
作者:Juhas Mark, Bursac Nenad
| 期刊: | Biomaterials | 影响因子: | 12.900 |
| 时间: | 2014 | 起止号: | 2014 Nov;35(35):9438-46 |
| doi: | 10.1016/j.biomaterials.2014.07.035 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
