Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, with limited survival outcomes due to tumor recurrence, mainly driven by GBM cell invasion and therapy resistance. Although temozolomide (TMZ) remains the standard-of-care chemotherapeutic, its long-term efficacy is often compromised by rapid emergence of acquired resistance, largely mediated by the DNA repair enzyme, methylguanine methyltransferase (MGMT). To investigate the interplay between tumor heterogeneity, drug resistance, and the extracellular matrix (ECM) microenvironment, we adapted a 3D methacrylamide-functionalized gelatin (GelMA) hydrogel model to study the behavior of mixed populations of TMZ-sensitive and TMZ-resistant GBM cells. Using both single-cell distributions and multicellular spheroids, we report the impact of heterogeneous cell populations and TMZ dosing regimens, including physiological, supraphysiological, and metronomic TMZ schedules, on drug response and migration. We show that the combination therapy of TMZ with an MGMT inhibitor, lomeguatrib, can modulate TMZ resistance in vitro. This hydrogel model enables systematic investigation of GBM heterogeneity, "go-or-grow" phenotypic plasticity, and therapeutic resistance in an ECM-rich microenvironment, offering a valuable platform for future translational research.
Multicellular Model of Temozolomide Resistance in Glioblastoma Reveals Phenotypic Shifts in Drug Response and Migratory Potential.
胶质母细胞瘤替莫唑胺耐药性的多细胞模型揭示了药物反应和迁移潜能的表型转变
阅读:5
作者:Kriuchkovskaia Victoria A, Eames Ela K, McKee Sydney A, Hergenrother Paul J, Riggins Rebecca B, Harley Brendan A C
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 11 |
| doi: | 10.1101/2025.07.08.663674 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
