S100 calcium-binding protein A4 (S100A4), a fibrosis-associated calcium-binding protein, has been implicated in fibrotic progression across multiple organs. Activation of the Wnt/β-catenin signaling pathway is a critical driver of hepatic fibrosis, yet the mechanistic role of S100A4 in this context remains poorly defined. This study investigated the regulatory role of S100A4 in hepatic fibrosis in vitro and in vivo. Hepatic stellate cells (HSCs) were treated with TGF-β to induce fibrotic activation, and S100A4 expression was silenced using shRNA. A carbon tetrachloride (CClâ)-induced murine hepatic fibrosis model was employed for in vivo validation. Fibrotic markers, including collagen I, fibronectin, and α-smooth muscle actin (α-SMA), were assessed via qRT-PCR, Western blotting, immunofluorescence, and immunohistochemistry. Liver histopathology and function were evaluated using Masson trichrome staining, hematoxylin-eosin staining, and serum ALT/AST assays. In vitro experiments demonstrated that TGF-β treatment upregulated S100A4 expression in HSCs, while S100A4 silencing suppressed HSC activation, extracellular matrix (ECM) deposition, and Wnt/β-catenin signaling. In vivo, S100A4 downregulation attenuated CClâ-induced hepatic fibrosis, reduced collagen accumulation, improved liver histology, and normalized serum ALT/AST levels. These findings indicate that S100A4 promotes hepatic fibrosis by activating the Wnt/β-catenin pathway, highlighting its potential as a therapeutic target.
Downregulation of S100 calcium-binding A4 (S100A4) ameliorates hepatic fibrosis via regulating Wnt/β-catenin signaling pathway.
S100钙结合蛋白A4 (S100A4) 的下调通过调节Wnt/β-catenin信号通路改善肝纤维化
阅读:8
作者:Zhang Chixian, Bai Kai, Li Dexu
| 期刊: | European Journal of Histochemistry | 影响因子: | 2.100 |
| 时间: | 2025 | 起止号: | 2025 Apr 7; 69(2):4186 |
| doi: | 10.4081/ejh.2025.4186 | 研究方向: | 信号转导 |
| 信号通路: | Wnt/β-Catenin | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
