BACKGROUND: The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the intramural periarterial drainage (IPAD) pathway. METHODS: Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG. Drugs/probes circulated for 5 min to 48 h, followed by perfusion. Brain sections were stained for human IgG, vascular basement membrane proteins laminin or collagen IV, and periarterial α-SMA. A machine learning algorithm was developed to identify metastases, metastatic microenvironment, and uninvolved brain in confocally scanned brain sections. Drug/probe intensity over time and total imaged drug exposure (iAUC) were calculated for 27,249 lesions and co-immunofluorescence with IPAD-vascular matrix analyzed in 11,668 metastases. RESULTS: In metastases, peak trastuzumab levels were 5-fold higher than human IgG but 4-fold less than biocytin-TMR. The elimination phase constituted 85-93% of total iAUC for all drugs/probes tested. For trastuzumab, total iAUC during uptake was similar to the small molecule drug probe biocytin-TMR, but slower trastuzumab elimination resulted in a 1.7-fold higher total iAUC. During elimination trastuzumab and IgG were preferentially enriched in the α-SMA+ periarterial vascular matrix, consistent with the IPAD clearance route; biocytin-TMR showed heterogeneous elimination pathways. CONCLUSIONS: Drug/probe elimination is an important component of drug development for brain metastases. We identified a prolonged elimination pathway for systemically administered antibodies through the periarterial vascular matrix that may contribute to the sustained presence and efficacy of large antibody therapeutics.
Distinct uptake and elimination profiles for trastuzumab, human IgG, and biocytin-TMR in experimental HER2+ brain metastases of breast cancer.
曲妥珠单抗、人IgG和生物素-TMR在实验性HER2+乳腺癌脑转移中的吸收和消除特征不同
阅读:7
作者:Silvestri Vanesa L, Tran Andy D, Chung Monika, Chung Natalie, Gril Brunilde, Robinson Christina, Difilippantonio Simone, Wei Debbie, Kruhlak Michael J, Peer Cody J, Figg W Douglas, Khan Imran, Steeg Patricia S
| 期刊: | Neuro-Oncology | 影响因子: | 13.400 |
| 时间: | 2024 | 起止号: | 2024 Jun 3; 26(6):1067-1082 |
| doi: | 10.1093/neuonc/noae025 | 种属: | Human |
| 靶点: | IgG | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
