Ecological Realism Accelerates Epigenetic Aging in Mice.

生态现实主义加速小鼠表观遗传衰老

阅读:4
作者:Zipple Matthew N, Zhao Ivan, Kuo Daniel Chang, Lee Sol Moe, Sheehan Michael J, Zhou Wanding
The aging of mammalian epigenomes fundamentally alters cellular functions, and such changes are the focus of many healthspan and lifespan studies. However, studies of this process typically use mouse models living under standardized laboratory conditions and neglect the impact of variation in social, physical, microbial, and other aspects of the living environment on age-related changes. We examined differences in age-associated methylation changes between traditionally laboratory-reared mice from Jackson Laboratory and "rewilded" C57BL/6J mice, which lived in an outdoor field environment at Cornell University with enhanced ecological realism. Systematic analysis of age-associated methylation dynamics in the liver indicates a genomic region-conditioned, faster epigenetic aging rate in mice living in the field than those living in the lab, implicating perturbed 3D genome conformation and liver function. Altered epigenetic aging rates were more pronounced in sites that gain methylation with age, including sites enriched for transcription factor binding related to DNA repair. These observations underscore the overlooked role of the social and physical environment in epigenetic aging with implications for both basic and applied aging research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。