Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we generate large numbers of free-floating GUVs through the rehydration of lipid films deposited on soft polyacrylamide (PAA) gels. We show that this technique produces high GUV concentrations for a range of lipid types, including charged ones, independently of the ionic strength of the buffer used. We demonstrate that the gentle hydration of PAA gels results in predominantly unilamellar vesicles, which is in contrast to comparable methods analyzed in this work. Unilamellarity is a defining feature of GUVs and the generation of uniform populations is key for many downstream applications. The PAA method is widely applicable and can be easily implemented with commonly utilized laboratory reagents, making it an appealing platform for the study of membrane biophysics.
Facile generation of giant unilamellar vesicles using polyacrylamide gels.
利用聚丙烯酰胺凝胶简便地生成巨型单层囊泡
阅读:5
作者:Parigoris Eric, Dunkelmann Daniel L, Murphy Allan, Wili Nino, Kaech Andres, Dumrese Claudia, Jimenez-Rojo Noemi, Silvan Unai
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2020 | 起止号: | 2020 Mar 16; 10(1):4824 |
| doi: | 10.1038/s41598-020-61655-2 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
