Rapid Multi-Well Evaluation of Assorted Materials for Hydrogel-Assisted Giant Unilamellar Vesicle Production: Empowering Bottom-Up Synthetic Biology.

快速多孔板评估各种材料在水凝胶辅助巨型单层囊泡生产中的应用:赋能自下而上的合成生物学

阅读:4
作者:Tan Cherng-Wen Darren, Schöller Magdalena, Ehmoser Eva-Kathrin
Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs. Some leach and contaminate the GUVs, while others require handling toxic material or specialised chemistry, thus limiting their use by novices. Alternative hydrogel materials could address these issues or even offer novel advantages. To facilitate discovery, we replaced the manual spreading of reagents with controlled drop-casting in glass Petri dishes and polystyrene multi-well plates, allowing us to rapidly screen up to 96 GUV-production formulations simultaneously. Exploiting this, we rapidly evaluated assorted biomedical hydrogels, including PEG-DA, cross-linked hyaluronic acid, Matrigel, and cross-linked DNA. All of these alternatives successfully produced GUVs. In the process, we also developed a treatment for recycling agarose and polyvinyl alcohol hydrogels for GUV production, and successfully encapsulated porcine liver esterase (PLE-GUVs). PLE-GUVs offer a novel method of GUV labelling and tracing, which emulates the calcein-AM staining behaviour of cells. Our results highlight the utility of our protocol for potentiating substrate material discovery, as well as protocol and product development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。