INTRODUCTION: Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. METHODS: Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing (18)F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. RESULTS: Pharmacokinetics of LEV showed a sex and dose dependence in C(max), CL/F, and AUC(0-â), with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed (18)F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e. positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent (18)F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. DISCUSSION: This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration- dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of (18)F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value towards informing clinical study design.
Levetiracetam Modulates Brain Metabolic Networks and Transcriptomic Signatures in the 5XFAD Mouse Model of Alzheimer's disease.
左乙拉西坦调节阿尔茨海默病 5XFAD 小鼠模型的脑代谢网络和转录组特征
阅读:5
作者:Burton Charles P, Chumin Evgeny J, Collins Alyssa Y, Persohn Scott A, Onos Kristen D, Pandey Ravi S, Quinney Sara K, Territo Paul R
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Dec 7 |
| doi: | 10.1101/2023.11.10.566574 | 种属: | Mouse |
| 研究方向: | 代谢 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
