INTRODUCTION: The identification of peptides eluted from HLA complexes by mass spectrometry (MS) can provide critical data for deep learning models of antigen presentation prediction and promote neoantigen vaccine design. A major challenge remains in determining which HLA allele eluted peptides correspond to. METHODS: To address this, we present a tool for prediction of multiple allele (MA) presentation called LRMAHpan, which integrates LSTM network and ResNet_CA network for antigen processing and presentation prediction. We trained and tested the LRMAHpan BA (binding affinity) and the LRMAHpan AP (antigen processing) models using mass spectrometry data, subsequently combined them into the LRMAHpan PS (presentation score) model. Our approach is based on a novel pHLA encoding method that enables the integration of neoantigen prediction tasks into computer vision methods. This method aggregates MA data into a multichannel matrix and incorporates peptide sequences to efficiently capture binding signals. RESULTS: LRMAHpan outperforms standard predictors such as NetMHCpan 4.1, MHCflurry 2.0, and TransPHLA in terms of positive predictive value (PPV) when applied to MA data. Additionally, it can accommodate peptides of variable lengths and predict HLA class I and II presentation. We also predicted neoantigens in a cohort of metastatic melanoma patients, identifying several shared neoantigens. DISCUSSION: Our results demonstrate that LRMAHpan significantly improves the accuracy of antigen presentation predictions.
LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks.
LRMAHpan:一种使用基于 Resnet 和 LSTM 的神经网络进行多等位基因 HLA 呈递预测的新工具
阅读:10
作者:Mi Xue, Li Shaohao, Ye Zheng, Dai Zhu, Ding Bo, Sun Bo, Shen Yang, Xiao Zhongdang
| 期刊: | Frontiers in Immunology | 影响因子: | 5.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 28; 15:1478201 |
| doi: | 10.3389/fimmu.2024.1478201 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
