Degradation of the Mitotic Cyclin Clb3 Is not Required for Mitotic Exit but Is Necessary for G1 Cyclin Control of the Succeeding Cell Cycle.

有丝分裂周期蛋白 Clb3 的降解对于有丝分裂的退出并非必需,但对于 G1 周期蛋白控制后续细胞周期是必要的

阅读:3
作者:Pecani Kresti, Cross Frederick R
B-type cyclins promote mitotic entry and inhibit mitotic exit. In Saccharomyces cerevisiae, four B-type cyclins, Clb1-4, carry out essential mitotic roles, with substantial but incomplete overlap of function among them. Previous work in many organisms has indicated that B-type cyclin-dependent inhibition of mitotic exit imposes a requirement for mitotic destruction of B-type cyclins. For instance, precise genomic removal of the Clb2 destruction box (D box) prevents mitotic proteolysis of Clb2, and blocks mitotic exit. Here, we show that, despite significant functional overlap between Clb2 and Clb3, D-box-dependent Clb3 proteolysis is completely dispensable for mitotic exit. Removal of the Clb3 D box results in abundant Clb3 protein and associated kinase throughout the cell cycle, but mitotic exit occurs with close to normal timing. Clb3 degradation is required for pre-Start G(1) control in the succeeding cell cycle. Deleting the CLB3 D box essentially eliminates all time delay before cell cycle Start following division, even in very small newborn cells. CLB3∆db cells show no cell cycle arrest response to mating pheromone, and CLB3∆db completely bypasses the requirement for CLN G(1) cyclins, even in the absence of the early expressed B-type cyclins CLB5,6 Thus, regulated mitotic proteolysis of Clb3 is specifically required to make passage of Start in the succeeding cell cycle "memoryless"-dependent on conditions within that cycle, and independent of events such as B-type cyclin accumulation that occurred in the preceding cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。