Vagal sensory neuron-derived FGF3 controls insulin secretion.

迷走神经感觉神经元衍生的FGF3控制胰岛素分泌

阅读:3
作者:Tahiri Azeddine, Youssef Ayman, Inoue Ryota, Moon Sohyun, Alsarkhi Lamyaa, Berroug Laila, Nguyen Xuan Thi Anh, Wang Le, Kwon Hyokjoon, Pang Zhiping P, Zhao Jerry Yingtao, Shirakawa Jun, Ulloa Luis, El Ouaamari Abdelfattah
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。