Mutations in the TP63 gene cause several syndromic disorders, including ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, characterized by severe skin erosions, cleft palate, and ectodermal dysplasia. These mutations often affect the carboxy-terminal sterile-α-motif (SAM) domain of the p63 protein, leading to domain misfolding, protein aggregation, and impaired transcriptional activity. To dissect the molecular mechanisms underlying AEC pathogenesis, we investigated primary keratinocytes derived from p63L514F mutant mice, which carry a SAM domain mutation associated with AEC syndrome. p63L514F keratinocytes exhibited significantly reduced proliferation compared to wild-type controls, as indicated by decreased 5-ethynyl-2'-deoxyuridine (EdU) incorporation, decreased Cyclin D1 and Cyclin D2 expression, and an increase in the cell-cycle inhibitors p21 and p27. Furthermore, p63L514F keratinocytes showed increased cell death, elevated reactive oxygen species (ROS) levels, and a decreased reduced (GSH) and oxidized (GSSG) glutathione (GSH/GSSG) ratio, indicating oxidative stress. This stress response was accompanied by a marked reduction in Solute Carrier Family 7 Member 11 (Slc7a11), a critical regulator of antioxidant defense. We further identified Slc7a11 as a likely direct transcriptional target of p63: p63 depletion reduced Slc7a11 expression, and chromatin immunoprecipitation uncovered an evolutionary conserved p63-binding enhancer upstream of the Slc7a11 promoter. Together, our findings demonstrate that p63 mutations causative of AEC syndrome impair keratinocyte proliferation, promote cell death via oxidative stress, and compromised antioxidant defenses, revealing a dual role for p63 in sustaining skin homeostasis.
Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate Syndrome-Linked p63 Mutations Disrupt Keratinocyte Proliferation and Survival Through Oxidative Stress and Impaired Slc7a11 Expression.
睑缘粘连-外胚层缺陷-唇腭裂综合征相关 p63 突变通过氧化应激和 Slc7a11 表达受损破坏角质形成细胞的增殖和存活
阅读:5
作者:Di Girolamo Daniela, Palumbo Sara, Antonini Dario, D'Auria Ludovica, Cerbone Vincenza, Porcelli Tommaso, Cavallo Federica, Calautti Enzo, Riganti Chiara, Missero Caterina
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 29; 26(11):5231 |
| doi: | 10.3390/ijms26115231 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
