BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC). Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719) was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059) plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER) cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.
Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma.
胰腺导管腺癌中丝裂原活化蛋白激酶和PI3K/Akt/mTOR通路的上游和下游共抑制
阅读:4
作者:Wong Matthew H, Xue Aiqun, Baxter Robert C, Pavlakis Nick, Smith Ross C
| 期刊: | Neoplasia | 影响因子: | 7.700 |
| 时间: | 2016 | 起止号: | 2016 Jul;18(7):425-35 |
| doi: | 10.1016/j.neo.2016.06.001 | 研究方向: | 肿瘤 |
| 信号通路: | PI3K/Akt、mTOR | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
