Activity-based anorexia (ABA) is an animal model for anorexia nervosa that has revealed genetic links to anxiety traits and neurochemical characteristics within the hypothalamus. However, few studies have used this animal model to investigate the biological basis for vulnerability of pubertal and adolescent females to ABA, even though the great majority of the anorexia nervosa cases are females exhibiting the first symptoms during puberty. GABAergic inhibition of the hippocampus strongly regulates anxiety as well as plasticity throughout life. We recently showed that the hippocampal CA1 of female mice undergo a dramatic change at puberty onset--from expressing virtually none of the nonsynaptic α4βδ GABA(A) receptors (GABARs) prepubertally to expressing these GABARs at ~7% of the CA1 dendritic spine membranes at puberty onset. Furthermore, we showed that this change underlies the enhanced modulation of anxiety, neuronal excitability, and NMDA receptor-dependent synaptic plasticity in the hippocampus by the stress neurosteroid, THP (3α-OH-5α[β]-pregnan-20-one or [allo]pregnanolone). Here, we used quantitative electron microscopy to determine whether ABA induction in female rats during adolescence also elevates the expression of α4 and δ subunits of α4βδ GABARs, as was observed at puberty onset for mice. Our analysis revealed that rats also exhibit a rise of α4 and δ subunits of α4βδ GABARs at puberty onset, in that these subunits are detectable at ~6% of the dendritic spine membranes of CA1 pyramidal cells at puberty onset (postnatal day 32-36; P32-36) but this drops to about 2% by P40-P44. The levels of α4 and δ subunits at the CA1 spines remained low following exposure of females to either of the two environmental factors needed to generate ABA--food restriction and access to a running wheel for 4 days--from P40 to P44. This pattern contrasted greatly from those of ABA animals, for which the two environmental factors were combined. Within the hippocampus of ABA animals, 12% of the spine profiles were labeled for α4, reflecting a sixfold increase, relative to hippocampi of age-matched (P44) control females (p < 0.005). Concurrently, 7% of the spine profiles were labeled for δ, reflecting a 130% increase from the control values of 3% (p = 0.01). No measurable change was detected for spine size. The observed magnitude of increase in the α4 and δ subunits at spines is sufficient to increase both tonic inhibition of hippocampus and anxiety during stress, thereby likely to exacerbate hyperactivity and weight loss.
Adolescent female rats exhibiting activity-based anorexia express elevated levels of GABA(A) receptor α4 and δ subunits at the plasma membrane of hippocampal CA1 spines.
表现出活动性厌食症的青春期雌性大鼠在海马 CA1 树突棘的质膜上表达高水平的 GABA(A) 受体 α4 和 α' 亚基
阅读:5
作者:Aoki Chiye, Sabaliauskas Nicole, Chowdhury Tara, Min Jung-Yun, Colacino Anna Rita, Laurino Kevin, Barbarich-Marsteller Nicole C
| 期刊: | Synapse | 影响因子: | 2.000 |
| 时间: | 2012 | 起止号: | 2012 May;66(5):391-407 |
| doi: | 10.1002/syn.21528 | 种属: | Rat |
| 研究方向: | 信号转导 | 信号通路: | Hippo |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
