TAM (TYRO3, AXL, MERTK) receptor tyrosine kinases (RTKs) have intrinsic roles in tumor cell proliferation, migration, chemoresistance, and suppression of antitumor immunity. The overexpression of TAM RTKs is associated with poor prognosis in various types of cancer. Single-target agents of TAM RTKs have limited efficacy because of an adaptive feedback mechanism resulting from the cooperation of TAM family members. This suggests that multiple targeting of members has the potential for a more potent anticancer effect. The present study used a deep-learning based drug-target interaction (DTI) prediction model called molecule transformer-DTI (MT-DTI) to identify commercially available drugs that may inhibit the three members of TAM RTKs. The results showed that fostamatinib, a spleen tyrosine kinase (Syk) inhibitor, could inhibit the three receptor kinases of the TAM family with an IC(50) <1 µM. Notably, no other Syk inhibitors were predicted by the MT-DTI model. To verify this result, this study performed in vitro studies with various types of cancer cell lines. Consistent with the DTI results, this study observed that fostamatinib suppressed cell proliferation by inhibiting TAM RTKs, while other Syk inhibitors showed no inhibitory activity. These results suggest that fostamatinib could exhibit anticancer activity as a pan-TAM inhibitor. Taken together, these findings demonstrated that this artificial intelligence model could be effectively used for drug repurposing and repositioning. Furthermore, by identifying its novel mechanism of action, this study confirmed the potential for fostamatinib to expand its indications as a TAM inhibitor.
Repurposing of the Syk inhibitor fostamatinib using a machine learning algorithm.
利用机器学习算法重新开发 Syk 抑制剂 fostamatinib 的用途
阅读:5
作者:Choi Yoonjung, Lee Heejin, Beck Bo Ram, Lee Bora, Lee Ji Hyun, Kim Seoree, Chun Sang Hoon, Won Hye Sung, Ko Yoon Ho
| 期刊: | Experimental and Therapeutic Medicine | 影响因子: | 2.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 4; 29(6):110 |
| doi: | 10.3892/etm.2025.12860 | 研究方向: | 其它 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
