Repurposing of the Syk inhibitor fostamatinib using a machine learning algorithm.

利用机器学习算法重新开发 Syk 抑制剂 fostamatinib 的用途

阅读:10
作者:Choi Yoonjung, Lee Heejin, Beck Bo Ram, Lee Bora, Lee Ji Hyun, Kim Seoree, Chun Sang Hoon, Won Hye Sung, Ko Yoon Ho
TAM (TYRO3, AXL, MERTK) receptor tyrosine kinases (RTKs) have intrinsic roles in tumor cell proliferation, migration, chemoresistance, and suppression of antitumor immunity. The overexpression of TAM RTKs is associated with poor prognosis in various types of cancer. Single-target agents of TAM RTKs have limited efficacy because of an adaptive feedback mechanism resulting from the cooperation of TAM family members. This suggests that multiple targeting of members has the potential for a more potent anticancer effect. The present study used a deep-learning based drug-target interaction (DTI) prediction model called molecule transformer-DTI (MT-DTI) to identify commercially available drugs that may inhibit the three members of TAM RTKs. The results showed that fostamatinib, a spleen tyrosine kinase (Syk) inhibitor, could inhibit the three receptor kinases of the TAM family with an IC(50) <1 µM. Notably, no other Syk inhibitors were predicted by the MT-DTI model. To verify this result, this study performed in vitro studies with various types of cancer cell lines. Consistent with the DTI results, this study observed that fostamatinib suppressed cell proliferation by inhibiting TAM RTKs, while other Syk inhibitors showed no inhibitory activity. These results suggest that fostamatinib could exhibit anticancer activity as a pan-TAM inhibitor. Taken together, these findings demonstrated that this artificial intelligence model could be effectively used for drug repurposing and repositioning. Furthermore, by identifying its novel mechanism of action, this study confirmed the potential for fostamatinib to expand its indications as a TAM inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。