Forces generated within the embryo during convergent extension (CE) must overcome mechanical resistance to push the head away from the rear. As mechanical resistance increases more than eightfold during CE and can vary twofold from individual to individual, we have proposed that developmental programs must include mechanical accommodation in order to maintain robust morphogenesis. To test this idea and investigate the processes that generate forces within early embryos, we developed a novel gel-based sensor to report force production as a tissue changes shape; we find that the mean stress produced by CE is 5.0±1.6 Pascal (Pa). Experiments with the gel-based force sensor resulted in three findings. (1) Force production and mechanical resistance can be coupled through myosin contractility. The coupling of these processes can be hidden unless affected tissues are challenged by physical constraints. (2) CE is mechanically adaptive; dorsal tissues can increase force production up to threefold to overcome a stiffer microenvironment. These findings demonstrate that mechanical accommodation can ensure robust morphogenetic movements against environmental and genetic variation that might otherwise perturb development and growth. (3) Force production is distributed between neural and mesodermal tissues in the dorsal isolate, and the notochord, a central structure involved in patterning vertebrate morphogenesis, is not required for force production during late gastrulation and early neurulation. Our findings suggest that genetic factors that coordinately alter force production and mechanical resistance are common during morphogenesis, and that their cryptic roles can be revealed when tissues are challenged by controlled biophysical constraints.
Force production and mechanical accommodation during convergent extension.
趋向伸展过程中的力产生和机械适应
阅读:5
作者:Zhou Jian, Pal Siladitya, Maiti Spandan, Davidson Lance A
| 期刊: | Development | 影响因子: | 3.600 |
| 时间: | 2015 | 起止号: | 2015 Feb 15; 142(4):692-701 |
| doi: | 10.1242/dev.116533 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
