Hyaluronic Acid-Functionalized Nanomicelles Enhance SAHA Efficacy in 3D Endometrial Cancer Models

透明质酸功能化纳米胶束增强 3D 子宫内膜癌模型中的 SAHA 功效

阅读:6
作者:Kadie Edwards, Seydou Yao, Simone Pisano, Veronica Feltracco, Katja Brusehafer, Sumanta Samanta, Oommen P Oommen, S Andrea Gazze, Roberta Paravati, Holly Maddison, Chao Li, Deyarina Gonzalez, R Steven Conlan, Lewis Francis

Abstract

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。