In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.
NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence.
NAD+ 池耗竭是参与无乳链球菌毒力的 Rex 调节子的信号
阅读:12
作者:Franza Thierry, Rogstam Annika, Thiyagarajan Saravanamuthu, Sullivan Matthew J, Derré-Bobillot Aurelie, Bauer Mikael C, Goh Kelvin G K, Da Cunha Violette, Glaser Philippe, Logan Derek T, Ulett Glen C, von Wachenfeldt Claes, Gaudu Philippe
| 期刊: | PLoS Pathogens | 影响因子: | 4.900 |
| 时间: | 2021 | 起止号: | 2021 Aug 9; 17(8):e1009791 |
| doi: | 10.1371/journal.ppat.1009791 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
