Synaptic plasticity underlying long-term memory is associated with the generation of saturated free fatty acids (sFFAs) -particularly myristic acid- from membrane phospholipids by the phospholipase A1 isoform DDHD2. However, the mechanism through which myristic acid contributes to synaptic plasticity remains elusive. Here we demonstrate that DDHD2-derived myristic acid is rapidly converted to myristoyl CoA, which serves as the substrate for N-myristoyl transferases (NMT1/2), to promote post-translational lysine myristoylation of synaptic proteins. Chemically-induced long-term potentiation (cLTP) in cortical neurons increases both sFFAs and their CoA-conjugates, predominantly myristoyl CoA, and this response is blocked by the DDHD2 inhibitor KLH-45. KLH-45-mediated inhibition of DDHD2 or IMP-1088-mediated inhibition of NMT1/2 also disrupts cLTP-induced proteomic changes, impairs dendritic spine remodeling, and prevents LTP in hippocampal slices. Instrumental conditioning further induces proteomic changes in the hippocampus, which are abolished in learning-deficient DDHD2(-/-) knockout mice. In these mice, key synaptic proteins such as NMDA receptor subunit GluN1, MAP2, and GAS7 fail to undergo learning-induced changes, effectively linking DDHD2 function to learning-dependent proteome remodeling. Our findings reveal that de novo lysine myristoylation promotes synaptic plasticity and memory formation.
Lysine myristoylation mediates long-term potentiation via membrane enrichment of synaptic plasticity effectors.
赖氨酸肉豆蔻酰化通过突触可塑性效应分子的膜富集来介导长期增强作用
阅读:6
作者:Matthews Benjamin, Steeves Sevannah A, Akefe Isaac O, Ahmed Noorya Yasmin, Gormal Rachel S, Dehorter Nathalie, Wallis Tristan P, Meunier Frédéric A
| 期刊: | EMBO Journal | 影响因子: | 8.300 |
| 时间: | 2025 | 起止号: | 2025 Aug;44(15):4196-4221 |
| doi: | 10.1038/s44318-025-00484-3 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
