Mechanisms of chemotherapy failure in refractory/relapsed acute myeloid leukemia: the role of cytarabine resistance and mitochondrial metabolism.

难治性/复发性急性髓系白血病化疗失败的机制:阿糖胞苷耐药性和线粒体代谢的作用

阅读:6
作者:Yeon Chae Soo, Jang Se-Young, Kim Jinhui, Hwang Sehyun, Malani Disha, Kallioniemi Olli, Yun Seung Gyu, Kim Jong-Seo, Kim Hugh I
Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Patients with wild-type FLT3 relapsed or refractory (R/R) AML face significant therapeutic challenges due to the persistent lack of effective treatments. A comprehensive understanding of the mechanisms underlying chemotherapy resistance is needed to the development of effective treatment strategies. Therefore, we investigated the molecular mechanisms underlying cytarabine (Ara-C) resistance and daunorubicin (DNR) tolerance in Ara-C-resistant RHI-1 cells derived from the wild-type FLT3 AML cell line SHI-1. Quantitative analysis of intracellular drug concentrations, proteomics, and phosphoproteomics showed that DNR resistance in Ara-C-resistant RHI-1 cells is driven by metabolic remodeling toward mitochondrial metabolism, upregulation of DNA repair pathways, and enhanced reactive oxygen species (ROS) detoxification rather than reduced drug uptake. Moreover, targeting these compensatory mechanisms, particularly the OXPHOS complex I proteins, significantly improved the efficacy of both Ara-C and DNR. Conclusively, these findings highlight mitochondrial metabolism and DNA repair as critical factors in chemotherapy resistance and offer valuable insights into potential therapeutic targets for enhancing treatment outcomes in patients with wild-type FLT3 R/R AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。